A multiple process latent transition model of poverty and health

Amanda Sacker asacker@essex.ac.uk

CCSR Seminar
University of Manchester
$6^{\text {th }}$ March 2012

Overview

- Background
- Introduction to the MPLTM
- Data

■ Model development

- Results
- Summary

Background

- The association between health and socio-economic position is well established but remains poorly understood
- Epidemiologists: disadvantage "causes" ill health
- Economists: poor health increases the risk of poverty
- But both acknowledge that reverse causation a possibility
- And equally plausible that disadvantage undermines recovery from ill health or that health related benefits lift people out of poverty

Multiple process latent transition analysis (MPLTA)

- For fitting models where there are two sequences of latent states
- Interested in the relationship between the sequences over time
- Does latent state in process A predict latent state in process B ?
- Does change in process A predict change in process B ?

The single process latent transition model

A simple LTA model

The multiple process latent transition model

$$
P\left(y_{i}\right)=\sum_{c_{1}=1}^{C_{1}} \sum_{d_{1}=1}^{D_{1}} \ldots \ldots . \sum_{c_{T}=1}^{C_{T}} \sum_{d_{T}=1}^{D_{T}} P\left(c_{1}, \ldots ., c_{T}, d_{1}, \ldots . d_{T}\right) P\left(y_{i} \mid c_{1}, \ldots ., c_{T}, d_{1}, \ldots ., d_{T}\right)
$$

where

$$
P\left(y_{i} \mid c_{1}, \ldots, c_{T}, d_{1}, \ldots, d_{T}\right)=\prod_{t=1}^{T} \prod_{j=1}^{J} P\left(y_{i t j} \mid c_{t}, d_{t}\right)
$$

and

$$
P\left(c_{1}, \ldots . ., c_{T}, d_{1}, \ldots . d_{T}\right)=P\left(c_{1}\right) P\left(d_{1} \mid c_{1}\right) \prod_{t=2}^{T} P\left(c_{t} \mid c_{t-1}, d_{t-1}\right) P\left(d_{t} \mid c_{t-1}, c_{t}, d_{t-1}\right)
$$

The conditional MPLTM

$$
P\left(y_{i} \mid z_{i}\right)=\sum_{c_{i}=1}^{c_{1}} \sum_{d_{1}=1}^{D_{1}} \ldots \ldots . \sum_{c_{T}=1 d_{r}=1}^{c_{r}} \sum_{1}^{D_{r}} P\left(c_{1}, \ldots \ldots, c_{T}, d_{1}, \ldots . d_{T} \mid z_{i}\right) P\left(y_{i} \mid c_{1}, \ldots, c_{T}, d_{1}, \ldots ., d_{T}, z_{i}\right)
$$

where

$$
P\left(y_{i} \mid c_{1}, \ldots, c_{T}, d_{1}, \ldots, d_{T}, z_{i}\right)=\prod_{t=1}^{T} \prod_{j=1}^{J} P\left(y_{i j} \mid c_{t}, d_{t}, z_{i t}\right)
$$

and
$P\left(c_{1}, \ldots ., c_{T}, d_{1}, \ldots, d_{T}, z_{i}\right)=P\left(c_{1} \mid z_{i 1}\right) P\left(d_{1} \mid c_{1}, z_{i l}\right) \prod_{t=2}^{T} P\left(c_{t} \mid c_{t-1}, d_{t-1}, z_{i i}\right) P\left(d_{t} \mid c_{t-1}, c_{t}, d_{t-1}, z_{i i}\right)$

Methods

- British Household Panel Study
\square Six waves data (1991, 1994, 1997, 2000, 2003, 2006)
- Analyses restricted to adults of working age and followedup to 2007 ($\mathrm{N}=2344$)
- Self-rated health
\square "Please think back over the last 12 months about how your health has been. Compared to people of your own age, would you say that your health has on the whole been excellent, good, fair, poor, very poor, don't know?"
- Poverty defined as adjusted annual HH income below 60% of national median for that year
- Covariates
\square Age in 1991, gender, number of weeks worked in previous year

Distribution of observed variables $(\mathrm{N}=2344)$

Year	1991	1994	1997	2000	2003	2006
Mean age	33.2	36.2	39.2	42.2	45.2	48.2
Females	49.2	49.2	49.2	49.2	49.2	49.2
Employment in previous year						
0 weeks	13.8	15.7	14.7	15.0	16.0	17.6
0< wks<52	12.2	10.4	8.1	6.5	7.3	6.8
≥ 52 weeks	74.0	73.9	77.2	78.6	76.7	75.6
Self-rated health						
Excellent	33.2	25.6	28.0	23.7	22.7	23.2
Good	46.9	50.2	46.3	49.3	48.4	49.0
Fair	14.6	18.1	18.6	19.2	20.6	19.2
Poor	4.3	5.1	5.3	6.1	6.7	6.5
Very poor	1.0	1.0	1.8	1.8	1.7	2.1
Poverty status						
Non poor	84.3	85.4	85.1	87.0	87.4	86.8
Poor	15.7	14.6	14.9	13.0	12.6	13.2

Model development

Health and poverty processes

- Health
\square Previous work shown that self-rated health can be represented by two latent classes of good and poor health with a first order latent transition process
\square Tested 2 models
- M1a: Free transition probabilities
- M1b: Equal transition probabilities
- Poverty
\square Similarly, two latent poverty classes with a first order transition process
\square Tested 2 models
- M2a: Free transition probabilities
- M2b: Equal transition probabilities

Equal transition probabilities

Single process model fit

Model comparison BIC $\Delta \chi^{2} \quad \Delta \mathrm{df} \quad \mathrm{p} \quad$ comment

Free transition probabilities	9294	Ref		Equal transitions model more	
Equal transition probabilities	9250	12.07	8	0.15	parsimonious, no loss of fit
Health single process model					
Free transition probabilities	31961	Ref		Equal transitions model more	
Equal transition probabilities	31922	16.53	8	0.04	parsimonious, marginal loss of fit

Nested series of MPLTA models

M3a Independence model:

$$
P\left(c_{t} \mid c_{t-1}\right) P\left(d_{t} \mid, d_{t-1}\right)
$$

M3b Cross-sectional model:

$$
M 3 a+P\left(d_{1} \mid c_{1}\right)
$$

M3c Unidirectional longitudinal model:

$$
M 3 b+P\left(c_{t} \mid c_{t-1}, d_{t-1}\right)
$$

M3d Bidirectional longitudinal model:

$$
M 3 c+P\left(d_{t} \mid c_{t-1}, d_{t-1}\right)
$$

M3e Change model:

$$
M 3 d+P\left(d_{t} \mid c_{t-1}, c_{t-2}, d_{t-1}\right)
$$

M3a: The independence model

M3b The cross-sectional model

M3c The unidirectional longitudinal model

M3d The bidirectional longitudinal model

M3e The change model

Multiple process model fit

	BIC	$\Delta \chi^{2}$	$\Delta d f$	p	Comment
M3a	41180	40.57	5	<0.00005	Model M3d selected by both M3b 41131
BIC and χ^{2}					

Conditional MPLTA

- Covariate effects

口On wave 1 latent states
\square On changes in latent states

- Time invariant covariates
\square Age in 1991 and gender
- Time varying covariate
\square Number of weeks worked in previous year

Conditional model

Nested series of models testing gender effects

- M4a: model 3d plus health \& poverty independent of gender at all waves
- M4b: model 4a plus gender effect on baseline health and poverty only
- M4c: model 4b plus gender effect on all poverty states
■ M4d: model 4c plus gender effect on all health states

MPLTM plus gender model fit

	BIC	$\Delta \chi^{2}$	$\Delta d f$	p	Comment
M4a	41088	45.32	4	<0.00005	Model M4c selected as most parsimonious well-fitting model
M4b	41065	10.01	2	0.007	
M4c	41066	2.45	2	0.18	
M4d	41072	Ref			

Nested series of models testing cohort effects

- M5a: model 3d plus health \& poverty independent of age in 1991
- M5b: model 5a plus age effect on baseline health and poverty
- M5c: model 5b plus quadratic effect on baseline health
- M5d: model 5c plus quadratic effect on baseline poverty
- M5e: model 5d plus age in 1991 on 1994-2006 health
- M5f : model 5e plus age in 1991 on 1994-2006 poverty
- M5g: model 5f plus quadratic effect on 1994-2006 health
- M5h: model 5 g plus quadratic effect on 1994-2006 poverty

Summary of cohort effects

- Age in 1991 has
\square linear effect on baseline poverty
\square quadratic effect on baseline health
\square no effect on changes in poverty or health once baseline relationships were taken into account

Nested series of models testing employment effects

- M6a: model 3d plus health \& poverty independent of weeks worked
- M6b: model 6a plus employment on poverty at each wave
■ M6c: model 6b plus employment on health at each wave

MPLTM plus employment model fit

	BIC	$\Delta \chi^{2}$	$\Delta \mathrm{df}$	p	Comment
M6a	39807	3091	4	<0.00005	Model M6c selected as most
M6b	38800	150	2	<0.00005	parsimonious well-fitting model
M6c	38770	Ref			

Final step

- Check that covariates had unique effects on health and poverty states
- Found that all three covariates contributed independently to health and poverty over time

Substantive results

- Measurement model

■ Structural model

- Covariate effects

Unconditional measurement model:

poverty

Observed poverty

Poor Non poor

Latent	Poor	0.746	0.019
poverty		(0.030)	(0.004)
	Non	0.254	0.981
	poor	(0.030)	(0.004)

Unconditional measurement model:

health

Observed health

Excellent
 Good
 Fair
 Poor
 Very poor

Latent
health

Good	0.451	0.511	0.034	0.005	0.000
	(0.065)	(0.055)	(0.011)	(0.001)	(0.000)
Poor	0.019	0.449	0.374	0.123	0.035
	(0.007)	(0.081)	(0.054)	(0.025)	(0.008)

Structural model: baseline probabilities conditional on age \& gender

	Good health	Poor health
	0.65	0.35
	(0.07)	(0.08)
Non poor	0.86	0.72
	(0.01)	(0.04)
Poor	0.14	0.29
	(0.01)	(0.04)

* Probabilities for a man aged 35 at baseline

Structural model: poverty transitions

 conditional on age \& gender| | | Time t | |
| :--- | :---: | :---: | :---: |
| Time t-1 | | Non poor | Poor |
| Non | Good health | 0.97 | 0.03 |
| poor | | (0.01) | (0.01) |
| | Poor health | 0.96 | 0.04 |
| | | (0.01) | (0.01) |
| Poor | Good health | 0.26 | 0.74 |
| | | (0.03) | (0.03) |
| | Poor health | 0.19 | 0.81 |
| | | (0.02) | (0.02) |

Structural model: health transitions conditional on age \& gender

Time t-1

Good Non poor

Good health
Poor health

Pealth

0.93	0.07
(0.02)	(0.02)
0.86	0.15
(0.04)	(0.04)
0.03	0.97
(0.01)	(0.01)
0.01	0.99
(0.01)	(0.01)

Covariate effects: regression of health and poverty on covariates

Logit(se) OR Logit(se) OR

Poor health ($\mathrm{t}=1$)
on gender
on cohort
on cohort squared
on weeks employed
Poor health ($\mathrm{t}>1$)
on cohort
on weeks employed
Poverty ($\mathrm{t}=1$)

on gender	$0.56(0.14)$	1.75	$-0.11(0.14)$	0.90
on cohort	$-0.20(0.10)$	0.75	$-0.06(0.10)$	0.95
on weeks employed			$-0.05(0.00)$	0.95

Poverty ($\mathrm{t}>1$)
on gender
on weeks employed

$0.60(0.15)$	1.62	$0.37(0.15)$	1.44
$0.07(0.09)$	1.07	$0.09(0.09)$	1.10
$0.34(0.13)$	1.41	$0.34(0.13)$	1.41
		$-0.02(0.00)$	0.99

$0.28(0.09) \quad 1.32 \quad 0.27(0.08) \quad 1.33$
-0.02 (0.00) 0.98

$$
\begin{array}{llll}
0.29(0.09) & 1.34 & 0.05(0.08) & 1.10 \\
& & -0.04(0.00) & 0.96
\end{array}
$$

Poverty transitions conditional on

 age, gender and employment

Health transitions conditional on age, gender and employment

Time t

Time t-1
Good health
Poor health
Good Non poor

0.94	0.06
(0.01)	(0.01)
0.92	0.08
(0.02)	(0.02)
0.05	0.95
(0.01)	(0.01)
0.03	0.97
(0.01)	(0.01)

- The multiple process latent transition analysis found that
\square Health and poverty were related crosssectionally, longitudinally and reciprocally
- Poverty was related to the stability of good health and declines in health
- Health was associated with the permanence of poverty and movement out of poverty.
\square Adding weeks worked to the model reduced the cross-lagged effects to non-significance
- Health related transitions into poverty appear to operate through the inability of unhealthy individuals to remain in the labour market
- Poverty's causal role in health decline is confounded by employment status

References

- Sacker, A., McDonough, P., \& Worts, D. (2012). A multiple process latent transition model of poverty and health. Methodology, under review.
- Sacker, A., Wiggins, R. D., Bartley, M., \& McDonough, P. (2007). Self-Rated Health Trajectories in the United States and the United Kingdom: A Comparative Study. American Journal of Public Health, 97, 812-818.
- Worts, D., Sacker, A., \& McDonough, P. (2010). Poverty vulnerability in the United States and Britain. American Journal of Sociology, 116(1), 232-271.
- Worts, D., Sacker, A., \& McDonough, P. (2010). Re-Assessing Poverty Dynamics and State Protections in Britain and the US: The Role of Measurement Error. Social Indicators Research, 97(3), 419-438. doi: 10.1007/s11205-009-9509-7

Acknowledgements

- Thanks to:
$\square E S R C$ International Centre for Life Course Studies in Society and Health
$\square E S R C$ Research Centre on Micro-Social Change
\square Canadian Institutes of Health Research
\square Social Sciences \& Humanities Research Council

